74 research outputs found

    Photoreductive Dissolution of Iron Oxides Trapped in Ice and Its Environmental Implications

    Get PDF
    The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO_2 and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)_(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)_(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (γ-Fe_2O_3), goethite (α-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Ålesund (Svalbard, 78°55′N) also showed that the generation of dissolved Fe(II)_(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw

    Characterizing Multi-radio Energy Consumption in Cellular/Wi-Fi Smartphones

    Get PDF
    Cellular networks evolved to meet the ever increasing traffic demand by way of offloading mobile traffic to Wi-Fi network elements. Exploiting multi-radio interfaces on a smartphone has recently been examined with regards to heterogeneous bandwidth aggregation and radio switching. However, how a smartphone consumes its energy in driving cellular and Wi-Fi multi-radio interfaces, is not well understood. In this paper, we revealed the energy consumption behavior of 3G cellular and Wi-Fi multi-radio operations of a smartphone. We modified smartphone’s firmware to enable multi-radios operations simultaneously and we performed extensive measurements of multi-radio energy consumption in a real commercial network. From the measured data set, we established a realistic multi-radio energy consumption model and it gave 98% stability from the derived coefficients

    Photometric defocus observations of transiting extrasolar planets

    Full text link
    We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of order sub-millimagnitude over several hours for a V ∼\sim 10 host star typical for transiting planets detected from ground-based survey facilities. We compare our results with transit observations with the telescope operated in in-focus mode. High photometric precision is obtained due to the collection of a larger amount of photons resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by probing the same pixels on the CCD. Furthermore, a longer exposure time helps reducing the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves for which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes have been achieved.Comment: 12 pages, 11 figures, 5 tables. Submitted to Journal of Astronomy and Space Sciences (JASS

    Dual-Hop Cooperative Relaying with Beamforming Under Adaptive Transmission in κ–μ Shadowed Fading Environments

    No full text
    In this paper, we analyze the performance of a dual-hop cooperative decode-and-forward (DF) relaying system with beamforming under different adaptive transmission techniques over κ − μ shadowed fading channels. We consider multiple antennas at the source and destination, and communication takes place via a single antenna relay. The published work in the literature emphasized the performance analysis of dual-hop DF relaying systems, in conjunction with different adaptive transmission techniques for classical fading channels. However, in a real scenario, shadowing of the line-of-sight (LoS) signal is caused by complete or partially blockage of the LoS by environmental factors such as trees, buildings, mountains, etc., therefore, transmission links may suffer from fading as well as shadowing, either concurrently or separately. Hence, the κ − μ shadowed fading model was introduced to emulate such general channel conditions. The κ − μ shadowed fading model is a general fading model that can perfectly model the fading and shadowing effects of the wireless channel in a LoS propagation environment, and it includes some classical fading models as special cases, such as κ − μ , Rician, Rician-shadowed, Nakagami- m ^ , One-sided Gaussian, and Rayleigh fading. In this work, we derive the outage probability and average capacity expressions in an analytical form for different adaptive transmission techniques: (1) optimal power and rate adaptation (OPRA); (2) optimal rate adaptation and constant transmit power (ORA); (3) channel inversion with a fixed rate (CIFR); and (4) truncated channel inversion with a fixed rate (TIFR). We evaluate the system performance for different arrangements of antennas and for different fading and shadowing parameters. The obtained analytical expressions are verified through extensive Monte Carlo simulations

    Multicasting in Next-Generation Software-Defined Heterogeneous Wireless Networks

    No full text
    • …
    corecore